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Abstract— In many real-world robotic grasping tasks, the
target object is not directly graspable because all possible grasps
are obstructed. In these cases, single-shot grasp planning will
not work, and the object must first be manipulated into a
configuration that allows for grasping. Our proposed method
ED-PAP solves this problem by learning a sequence of actions
that exploit constraints in the environment to change the
object’s pose. Concretely, we employ hierarchical reinforcement
learning to distill controllers that apply a sequence of learned
parameterized feedback-based action primitives. By learning a
policy that decides on a sequence of manipulation actions, we
can generate a complex manipulation behavior that exploits
physical interaction between the object, the gripper, and the
environment. Designing such a complex behavior analytically
would be difficult. Our hierarchical policy model operates
directly on depth perception data without the need for object
detection or pose estimation. We demonstrate and evaluate
our approach for a clutter-free table-top scenario where we
manipulate a box-shaped object and use interactions with the
environment to re-orient the object in a graspable configuration.

I. INTRODUCTION
State-of-the-art systems for autonomous grasp acquisi-

tion [1], [2], [3] function well in moderately cluttered scenes
but are fundamentally limited in assuming that objects are
directly graspable — a situation that arises often in practice,
for example, in cases when objects are tightly packed to-
gether, or placed in configurations that invalidate all feasible
grasps (e.g., think of a book wider than the opening of the
gripper, lying flat on a table). To address such practically
relevant scenarios the robot arm needs to re-arrange objects
in a non-prehensile manner, which poses unique challenges
to perception, planning, and control.

Current non-prehensile object rearrangement methods use
trial-and-error learning to deal with the stochastic and un-
predictable nature of in-contact physical interactions [4],
[5], [6], [7]. As black-box reinforcement learning involving
contact dynamics has prohibitively high interaction sample
complexity, a common solution is to employ manually de-
signed parametric controllers dubbed behavior primitives.
However, this has two disadvantages compared to the more
general end-to-end approaches: first, it limits applicability to
only tasks that can be solved by existing primitives; and sec-
ond, it necessitates expert input in designing, implementing,
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Fig. 1. Top: In the initial pose, all feasible grasps on the target object
are obstructed by the environment. Bottom (left to right): We learn to use
a wall to flip the object up and grasp it from the top.

and tuning the primitive controllers. While some progress
has recently been made in alleviating the first shortcoming
through e.g., the use of atomic actions to “stitch” together
primitives [7], the need for expert input in primitive design
still poses a major challenge.

Instead of relying on manually-defined behavior primitives
or resorting to costly end-to-end reinforcement learning
(RL), we take a middle ground and learn hierarchical control
policies. This allows us to maintain the generality of full-
scale RL while imposing strong inductive biases in terms of
the decomposition of tasks to a number of parametric prim-
itives with associated lower-dimensional state-action spaces.
We solve a variation of the occluded grasping task [8] in
which a robot arm equipped with a parallel jaw gripper
needs to pick a flat object placed on a table-top (see Fig. 1).
As the object is only graspable along approach directions
that collide with the table, the task can only be solved
via non-prehensile manipulation and interaction with the
environment: the robot needs to slide the object, push it
against one of the boundaries, pivot to flip and finally grasp
it from the top. We train our approach in simulation through
curriculum learning [9] and apply Automatic Domain Ran-
domization [10] to enable zero-shot transfer to the real world.

Our contributions are thus: first, we propose an approach
for learning hierarchical manipulation policies that allow for
imposing intuitive inductive biases without relying on expert
controller design; and second, we instantiate the proposed
framework to the task of picking objects from non-graspable
configurations and demonstrate that our approach is able to
efficiently solve the problem for a variety of object instances.
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Fig. 2. Overview. Our proposed ED-PAP method includes a high-level agent and a low-level agent. The high-level agent takes a height map as input
to an FCN model and outputs pixel-wise maps of Q values, with each pixel corresponding to a starting pose and a primitive. The low-level agent records
the starting pose given by the high-level agent as the base frame of reference and combines the current end-effector pose and contact force as the state to
estimate a series of actions for accomplishing sub-task by a DQN model.

II. RELATED WORK

A. Primitive-based robotic manipulation

Reinforcement learning for robotic manipulation poses
a significant challenge due to the difficulty of effectively
exploring in a high-dimensional continuous action space,
which can lead to inefficient learning. To address these
problems, early works [4], [5], [11], [12], [13], [6] have
explored reinforcement learning for manipulation using pre-
defined primitives to avoid exploring a high-dimensional
continuous action space. Recent work [7] applies hierarchical
reinforcement learning [14] for separating the primitive and
the estimation of its parameters to improve performance.
Although these works demonstrate significant results, they
all rely heavily on pre-defined behavioral primitives. Man-
ually designed complex behavioral primitives often requires
human expertise and takes a significant amount of time and
effort. In this paper, we learn the behavior of a contact-
rich primitive for flipping the flat object by hierarchical
reinforcement learning without manually designing it.

B. Extrinsic dexterity for grasping

To enhance the ability of a robot hand for robotic manip-
ulation, extrinsic dexterity [15] is a type of skill that exploits
external resources to assist manipulation. Early works [16],
[17], [18] have explored environmental constraints exploita-
tion such as slide-to-wall and slide-to-edge to assist grasping.
Some recent works [19], [20] learn a policy to grasp flat
objects based on visual information. However, these works
rely on simple visual servoing to initiate grasping, assume
the object position is given, or need a specific gripper
design. In our work, we use the standard Franka Emika
gripper for grasping flat objects based on visual information
without a given object position or grasp pose. The work by
Zhoua and Held [8] is closely related to ours, as it also

targets grasping objects placed in unfavorable configurations
through reinforcement learning. They propose to learn a
policy to achieve a given target grasp configuration that
is initially occluded by the table. However, the approach
presented has several limitations: the target object needs to be
placed close to the wall, a target grasp configuration needs to
be available, and the object pose has to be tracked throughout
the interaction. In contrast, we combine different primitives
to overcome the assumption of object-to-wall proximity and
demonstrate our approach is able to efficiently solve the
problem without access to a target grasp or object pose
estimate.

III. METHOD

We address the occluded grasping problem using hi-
erarchical DQN [14]. A high-level agent selects pose-
parametrized primitives, while low-level agents operate in
primitive-specific state-action spaces to accomplish sub-
tasks. We use 3 primitives: a flip primitive that uses contact
with the environment to pivot an object; a top-down grasp
primitive that picks directly graspable objects, and a push
primitive that achieves in-plane object motion. We employ
a low-level DQN agent to learn the complex flip primitive
and design the other two manually. This allows us to achieve
good performance while keeping the system simple.

A. Manipulation with Parameterized Primitives

An overview of our method is shown in Fig 2. Given
an input depth image of the workspace, the goal of our
high-level policy is to pick a starting pose and choose an
appropriate primitive to apply. We use a Fully Convolutional
Network (FCN) [21] as our high-level policy model, inspired
by Ren et al. [5]. The action space for the high-level model
is formulated as a tuple (Ps, ϕ), where ϕ ∈ {ϕf , ϕg, ϕp}



is a discrete choice between the flip primitive ϕf , the top-
down grasp primitive ϕg , or the push primitive ϕp; while
Ps = (x, y, θi) encodes an end-effector pose corresponding
to a translation to the (x, y)-th pixel of the depth image and
a rotation of θi = 2πi/K rad around the z-axis.

We pre-process the depth image by transforming it to a
robot-centric coordinate frame, passing it through a noise
smoothing filter, and projecting it to a height map. We then
rotate the height map K times, concatenate the results, and
pass them to the FCN. The FCN outputs a batch of Q maps,
each corresponding to a possible primitive choice (3 in this
paper) for each rotated height map. Each pixel in the Q
map corresponds to a starting pose Ps and a primitive id ϕ.
The optimal action is the pixel with the maximum Q-value,
potentially within a masked region of interest.

We train the high-level agent using a sparse reward.
Successful actions with the flip primitive and the top-down
grasp primitive are rewarded by r

Hf

t = 1 and r
Hg

t = 1
respectfully. The reward of successful push primitive actions
is set to a value of rHp

t = 0.2 on success and r
Hp

t = 0.1 on a
change in the workspace configuration. The flip primitive is
considered successfully executed if it results in the object
being reoriented vertically. The top-down grasp primitive
succeeds when the target object is acquired between the
gripper fingers. Finally, the push primitive is successful if
the object is moved in the proximity of a workspace wall.

During training, we employ the ϵ-greedy strategy to ex-
plore the different actions. To reduce the region that the agent
needs to explore, we adopt the masking approach from Ren
et al. [5]. The idea is that the agent only has to explore pixels
nearby the target object. Thus, we calculate the mask from
the height map and decide the affordance region for each
primitive based on the pixel values.

B. Learning behavior for a contact-rich primitive

A key distinguishing feature of our approach is that we
do not rely solely on expert-devised behavior primitives, but
rather learn low-level action policies in conjunction with the
high-level policy from the previous section. In this paper
we train only one such low-level policy — for the flipping
primitive; though extensions to multiple learnable low-level
policies are in principle possible.

The low-level primitives encode motion policies that can
be learned via black-box RL with a state-action space based
on the end-effector pose. While this would be a general
approach, it is likely to require a large amount of interaction
experience (high-dimensional state and action spaces) and
poses challenges for learning in conjunction with the high-
level policy. We avoid these issues by encoding a strong
inductive bias in devising the state and action spaces of
the low-level policy. We formulate the action space as the
end-effector velocity in a 3D task space composed of the
distance d, height z, and angle θy relative to the primitive
starting pose. The possible actions are then discrete steps
along d ∈ {0, ad} to move forward; z ∈ {0, az} to move
up; and the θy ∈ {−ry, 0, ry} to rotate along the y-axis. We
formulate the state as sl = (pal , fd, fmax), where pal ∈ R3

Fig. 3. An example sequence of picking up a flat object (in simulation).
The left column shows the current observation and the right column contains
the estimated Q maps for each of the three primitives across 16 discrete
orientations.

is the current end-effector task-space pose; fd is the contact
force along the d-axis; and fmax is the maximum of the
current contact force.

To learn the low-level action policy, we could in a straight-
forward manner define the reward sparsely on successful
flips. However, as sparse rewards result in less efficient
learning [22], we choose to instead design a reward function
that considers the contact force and end-effector position:

rτ = r
Hf

t + rLτ (1)

rHt =

{
1 , if flip success
0 , otherwise

(2)

rLτ =


min(σ, zτσ

w ) , if fc > 0

−1 , if fc > flimit

0 , otherwise
(3)

where fc is the current contact force, flimit is the maximum
safety contact force, zτ is the current end-effector height,
and σ and w are hyper-parameters that normalize the zτ and
limit the upper bound of the reward. Based on this reward
function, we encourage the agent not only to flip the object
up but also to pivot it while maintaining contact and avoid
applying too much contact force. We find that without the
penalty for applying excessive contact force, the robot may
trigger emergency stops in the real world, making the transfer
of policies learned in simulation more challenging.

C. Curriculum learning and domain randomization

Training the high-level and low-level models simultane-
ously can be difficult, as it is hard to determine whether a
failure is due to the high-level agent or the primitive behavior.
To address this, we train the two models separately, following
a curriculum learning [9] approach. We train the low-level
agent first, devising progressively more complex interaction
scenarios and only include the high-level model once the
low-level policy can successfully flip objects.

To adapt our method to the domain shift between sim-
ulation and the real world, we employ Automatic Domain
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Fig. 4. Testing curve of success rate versus training transitions of the high-level model in simulation. (a) Full-task success rate (successfully picking the
object with 10 or less primitives). (b) The success rate for the grasp primitive. (c) The success rate for the flip primitive. Success rates of the primitives
are computed over the last 100 attempts.

Randomization (ADR) [10] during simulation training. ADR
randomly samples the object size, friction, and mass in each
episode, making our method more robust to variations in
real-world objects. We also add Gaussian noise and randomly
block a few regions in the simulated depth image to simulate
the noise and reflections of the real-world height map.

IV. EXPERIMENTS
A. Experimental Setup

We address the occluded grasping task by flipping a large
flat object and grasping from the side as shown in Fig. 1. To
demonstrate our model’s ability to learn extrinsic dexterity
skills, we use a Franka Emika Panda arm with a 2-finger
gripper which is not wide enough to grasp large flat objects
by top-down grasping directly. For the environment setup, we
put a 44.8×44.8 cm wooden box with four boundaries as the
workspace (see Fig. 1) and mount a camera directly above it.
An overhead depth image is captured by a Kinect v2 camera
and transformed into a height map as input to the high-level
model. To avoid the robot occluding the workspace, we move
the robot to one corner before acquiring the depth map.

To evaluate our approach, we test our method in the real
world with 5 box-shape objects with different weights, sizes,
and friction. We compare our proposed method ED-PAP
with an alternative instance (denoted ED-PAP-MD) where
the learned flip primitive is replaced by a manually designed
version, in order to demonstrate that the learned low-level
policy performs better than the manually designed one.

We test our method in two setups: close, where the object
is placed next to one random wall of the box; and random
where the object is placed randomly near the center of the
workspace. We use the completion rate as the evaluation
metric and test 10 episodes for each object. An episode is
considered successful if the robot picks up the object after
applying up to 10 primitive actions.

B. Training in simulation

We use Isaac Sim to build the simulation for a variation
of the occluded grasping task to train our model. To better
realize how the robot makes a decision in the current state,
we visualize the high-level model’s Q maps in Fig 3. As the
first action (Fig 3 top row), the robot moves the object against

one of the four walls by rotating the gripper −22.5◦ around
the z-axis and applying the push primitive. After pushing
(middle row), the robot executes the flip primitive to flip up
the object. Finally, the robot rotates the gripper 67.5◦ around
the z-axis and executes a top-down grasp primitive to pick
up the object.

Our method is trained in simulation using flat objects of
random friction, weight, and size. We randomly place the
object in the workspace and evaluate whether the robot can
pick it up, applying 10 primitives or less. Fig. 4 shows the
learning curve of success rate versus training transitions.
We measure the grasp success rate over the last 100 grasp
attempts and use the same way to measure the flip success
rate and full-task completion rate. In this experiment, we
start to test the model after 5000 transitions. Although our
method as well as ED-PAP-MD can both reach an 80%
completion rate before 8000 transitions, the improvement of
ED-PAP-MD slows down after 8000 and 7000 transitions.
This result implies that the learned parameterized feedback-
based action primitive can better adapt to diverse situations
than the manually designed primitive.

C. Real-world experiments

The real-world experiments are still ongoing and not in-
cluded in this paper. We are currently evaluating our method
with real-world experiments, using zero-shot transfer from
simulation to a real-world setup using five different box-type
objects. For all objects, we evaluate the method both with
the same type of randomized start configuration as is done in
simulation, and a start configuration where the box is placed
next to a wall.

V. CONCLUSION

We propose an approach for learning hierarchical manip-
ulation policies that allow for imposing intuitive inductive
biases without relying on expert controller design. We apply
our framework to the task of picking objects from non-
graspable configurations using a learnable wall-assisted flip-
ping primitive and demonstrate that our approach is able to
efficiently solve the problem for a variety of object instances.
Notably, compared to the state-of-the-art, we do not require
the object to be placed near a supporting wall.
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